IEC PT26 Wind Energy Seminar

Japan Electrical Manufacturers’ Association
Tokyo, Japan

Robert Sherwin

EAPC Wind Energy Services LLC
Norwich, Vermont, USA

October 27, 2009
Discussion

- Historical Trends in Wind Energy Development
 - Technology
 - Market Drivers
 - Industry Base
 - Challenges
The 1970’s

- **Technology**
 - Small turbines
 - Many configurations
 - 1kw to 25kw generators with rotor diameter 3-10 meters

- **Market Drivers**
 - First Arab Oil Embargo
 - Back to the Earth Movement and perceived energy independence
 - Federal Energy Tax Credits

- **Industry Base**
 - Small, undercapitalized entrepreneurial companies
 - Government R&D funding to large aerospace companies – all failed

- **Challenges**
 - Turbines that work
 - Understanding forces that effect turbine design and reliability
 - Locating wind resources
 - Local permitting
 - Dealing with very reluctant utilities
 - Capital for industry
The 1980’s

- **Technology**
 - 50kw to 600kw turbines with rotor diameter of 15-50m rotor diameter
 - First Wind Farms: Denmark, Netherlands, California
 - Parallel development
 - Heavier three-bladed Danish turbine design
 - Lightweight design driven by US DOE R&D funding

- **Market Drivers**
 - Energy Investment Tax Credit (first half of decade)
 - Government policies in Europe
 - Local high power prices (California)

- **Industry Base**
 - US: Entrepreneurial Companies improving turbine designs
 - New investor-based companies doing turn-key farms in California

- **Challenges**
 - Reliability – Series Failures, Blades, Gearboxes, Generators, Yaw Drives
 - Convincing Utilities to accept larger scale wind projects
 - Locating and Documenting wind resource
 - Understanding nature of lifetime loads on turbine
 - Capital for long-term industry growth
 - Consistent government policies in Europe and North America
The 1990’s

- **Technology**
 - 600kw to 1000kw with rotor diameters up to 70m
 - Introduction of power electronics and direct drive generators
 - Increased geographic base – site specific turbine technologies
 - Application of new manufacturing techniques and materials (Carbon Fiber, etc.)
 - Development of IEC Standards

- **Market Drivers**
 - European and US government policies
 - Improved economics
 - Higher cost of other generation sources
 - Standardization of Design – 3 bladed monopole tower
 - Go-Go 90’s
 - Beginning of Green Revolution

- **Industry Base**
 - Expansive growth of European Industry and first market entry from Asia (Mitsubishi)
 - First arrival of major funding for US companies such as Zond/Enron

- **Challenges**
 - Utility Integration
 - Turbine Reliability – Series gearbox, blade, and yaw drive failures
 - Financing for industry growth
The 00’s

- Technology
 - Up to 3600 and bigger with rotor diameters up to 120m
 - Commercial Offshore Deployment
- Market Drivers
 - Economics very good in most high capacity locations
 - Rising Utility Costs
 - Off-Take packages to sell energy in wider markets
 - Uncertain Energy Costs
 - Environmental Benefit Awareness and Global Warming
 - Shortage of Generation in parts of US, India, China, Europe
 - Diversity of Supply – Energy Security
 - Green Tags, Renewable Energy Credit, Production Tax Credits
 - Corporate Image
 - Greed
 - Proven Turbine Designs guaranteed by major corporations
 - Utility Acceptance
The 00’s continued

- **Industry Base**
 - Few small entrepreneurial companies
 - Large growth in consulting and support services
 - Significant entry of major world corporations for turbine supply (GE, Siemens, Mitsubishi, etc)
 - Significant entry of major financial institutions to finance debt and tax equity (GE finance, Wachovia, Morgan Stanley)
 - Significant entry of wall street firms to fund development (Goldman Sachs, Morgan Stanley, JP Morgan)
 - Significant entry of major international construction firms (Fluor, Areva, ABB)
 - Significant entry of major utility ownership of projects (FPL, Iberdrola, Enel)
 - Greening of major energy companies buying up smaller companies (BP, Shell)
 - More capital than available turbines
2009 - Recent Developments

- Financial Disruption and Economic Crisis
- 17 major tax equity providers reduced to 3-4 major players
- Stimulus money drives market but creates ambiguity in the market
- Regulatory uncertainty stalled development and construction while IRS wrote new tax rules
- New market entrants coinciding with market disruption
- Large amount of uncertainty in project valuation
- Industry consolidation
- Small developers struggling to stay afloat
- Uncertainty and volatility in crude oil and natural gas markets
- Decrease in the growth of energy pricing in some markets
Current Challenges

• Project Capital Costs Increased Consistently Until Fall 2009
 – Shortage of wind turbine suppliers (now starting to change)
 – Shortage of wind turbine manufacturing capacity
 – Supply chain constraints of critical components such as bearings, gearboxes, large transformers, etc.
 – High demand and low supply of commodities such as steel, copper, and concrete (competing needs – China, India)
 – Higher logistics and transport costs due to rising fuel costs and need for specialized equipment for larger turbines
 – Many wind turbines and components are priced in Euros (weak dollar)
 – Rising labor costs due to shortage of qualified personnel
 – Because of turbine shortage, warranty terms are shorter and more expensive

• Financial crisis changed much of the Q3 2008 status quo...
Current Challenges (continued)

- Improved Wind Turbine Reliability but continued gear box and blade issues
- Understanding loads on new, bigger turbines
- Onshore
 - Complex terrain, forest, and wind turbine wake effect issues
- Offshore
 - Improved availability and construction design for deeper water
 - Understanding load profiles for both wind and sea conditions
- Transmission constraints and access – increasingly limited opportunities to get wind power to market.
- Shortage of qualified engineers, technicians, and manufacturing capacity
- Accessing project financing
 - Debt financing for construction and turbine procurement is more difficult
Future

- Turbines up to 7500kw with rotor diameters up 150m
- Increased demand for domestic electricity
- Increased demand for greener, lower emission energy production (carbon credit market, new international climate change framework)
- Application of new materials to increase strength and lower weight of large-scale turbines
- New manufacturing with high demand likely to come from India, China, Korea, and Brazil and new entries from US and Europe
- Uncertain Energy Costs and Supply will continue to drive the use of wind energy
- Lack of smaller turbine suppliers for behind the meter projects (<600kW)
Thank You