Our geographic reach

- 650 renewable energy staff, in 35 locations, across 18 countries
- Wind, Wave, Tidal and Solar
Asset Management and Optimisation Services (AMOS)

25 Professionals worldwide (7 UK based)

- Performance Monitoring
- Fault diagnostics and forensic analysis of SCADA data
- Post-construction energy forecasts
- Warranty calculations
- End of warranty inspections
- O&M advice
- Performance profiling and benchmarking

Over 15 GW of operating plant assessed worldwide
Performance Optimisation
- Not just a question of availability but efficiency!

Turbine stopped for 3% of the time
- Main focus of contractors

Turbine running for 97% of the time*
- But how efficiently?

* Observed Availability Trends, Harman, Walker, EWEC 08
Case study 1

Availability: Liquidated damages claim (UK)

<table>
<thead>
<tr>
<th>Status description</th>
<th>A01</th>
<th>A02</th>
<th>A03</th>
<th>A04</th>
<th>A05</th>
<th>A06</th>
<th>A07</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE FAULT VOLTAGE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MOTOR PROTECTION TOP CABINET</td>
<td>0.0</td>
<td>2.6</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PROGRAM START PLC</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3</td>
<td>3.5</td>
<td>0.3</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>NO ACTIVITY CAN-BUS CCU</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MOTOR PROTECTION TOP CABINET</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PROGRAM START PLC</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3</td>
<td>3.5</td>
<td>0.3</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>NO ACTIVITY CAN-BUS CCU</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ROTOR CCU COLLECTIVE FAULTS</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>TIMEOUT PITCH CONTROLLER</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>GEARBOX OIL LEVEL TOO LOW</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>BATTERY VOLTAGE LOW AXLE 2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REPAIR</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>1.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>LIMIT SWITCH ROTOR BLADE 90° DEFFECTIVE</td>
<td>5.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BRAKING PAD OF SECONDARY BRAKE WORN OUT</td>
<td>2.1</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BLADE ANGLE ASYMMETRY</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BATTERY VOLTAGE LOW AXLE 3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>UNDERVOLTAGE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OVERTEMPERATURE PITCH MOTOR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>GENERATOR BRUSHES WORN</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NO SPEED REDUCTION WITH SECONDARY BRAKING</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>YAW LIMIT SWITCH ACTIVATED</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MOTOR PROTECTION PITCH MOTOR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

All other statuses

<table>
<thead>
<tr>
<th></th>
<th>A01</th>
<th>A02</th>
<th>A03</th>
<th>A04</th>
<th>A05</th>
<th>A06</th>
<th>A07</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>7.5</td>
<td>5.8</td>
<td>15.7</td>
<td>6.2</td>
<td>2.3</td>
<td>2.9</td>
<td></td>
</tr>
</tbody>
</table>

- Availability warranty liquidated damages claim calculated by manufacturer at £35k (~5M¥)
- GH review of SCADA data and service records reveals incorrect downtime allocation
- Eventually claim paid at £300k (~45M¥)
Case study 2
Efficiency: De-rating losses (UK)

- Wind farm not producing budgeted energy despite good wind speeds
- Analysis identified periods of de-rating and quantified energy losses
- £200k (~30M¥) lost revenue due to manual de-rating of the turbines
- De-rating now kept to a minimum through regular monitoring
Case study 3
Efficiency: Controller malfunction (France)

- Malfunction of controller identified through analysis of SCADA data
- Manufacturer informed and remedial action taken
- If undetected losses would have continued in excess of €30k (~4M¥) per year for a single turbine
Case study 4
Efficiency: Wind vane alignment (UK)

- Wind vane misalignment identified through analysis of SCADA data and confirmed by inspection
- New more accurate method for alignment provided and implemented in collaboration with manufacturer
- Estimated £150k (~20M¥) annual losses avoided with remedy a small fraction of the remediation costs
Case study 5
Direction calibration for wind sector management (UK)

• Wind sector management required for certification
• Existing calibration had low accuracy
• Some turbines running in restricted sector and switched off in unrestricted sector
• New calibration method established and implemented in collaboration with manufacturer

Before calibration

After calibration

Nacelle direction [deg]

Time

N

Turbine 2

Turbine 1

Narrow 20 degree shutdown sector requires accurate calibration
Concluding remarks

• Make the best use of the SCADA data to optimise performance

• Don’t just focus on availability – the turbines are running for 97% of the time, but how efficiently?

• Think of minimizing turbine loading as well as maximising energy and profits

• Don’t rely on contractual arrangements to claim back losses

Regularly monitor your wind farm efficiency to ensure that the turbines are operating as they were designed to!
Thank you
Staffan.Lindahl@garradhassan.com
www.garradhassan.com/services/amos